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$ Austrian Research Center Seibersdorf, A-2444 Seibersdorf, Austria 
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Abstract. The exact dynamics of a system of N hard rods of different masses and the 
Boltzmann equation for an infinitely extended mixture of two kinds of hard rods are used 
to derive formulae for the equilibrium velocity distributions, the collision frequency and 
the velocity autocorrelation function to first order in time. These formulae and a symmetry 
relation for the self-diffusion coefficients of a binary mixture are used to discuss some of 
the results of the molecular dynamics simulations performed recently by Marro and 
Masoliver. 

1. Introduction 

For many years one-dimensional systems of hard rods have been studied to discuss 
fundamental problems of (classical) statistical mechanics (see Kasperkovitz and 
Reisenberger 1985a, Boldrighini 1984, Hiroike 1983, Piasecki 1983, Gevois and Pomeau 
1976, de Pazzis 1971). These systems were also used to compare exact theoretical 
results with those obtained from computer simulations (Haus and Ravechi 1978, 
Bishop and Berne 1974). In most of these investigations all masses were assumed to 
be equal; only a few papers dealt with systems containing different masses (Boldrighini 
et al 1985, Eder et al 1984, Marro and Masoliver 1985a, b, Masoliver and Marro 1983). 
In a recent series of papers Marro and Masoliver reported on molecular dynamics 
simulations for binary mixtures of hard rods from which they deduced propositions 
on the collision frequency, the relaxation of the initial velocity distribution to an 
equilibrium distribution, short- and long-time behaviour of the single-particle velocity 
autocorrelation functions for particles of each species, and (approximate) self-diff usion 
constants. 

The purpose of this paper is to compare their findings with theoretical results, as 
far as they can be deduced from the exact (deterministic) dynamics of the system or 
its Boltzmann description. These results concern the equilibrium velocity distribution, 
the collision frequency, the derivatives of the normalised velocity autocorrelation 
functions at t = 0 and a symmetry relation for the self-diffusion constants of a binary 
mixture. The corresponding formulae are stated in § 2. In Q 3 we contrast the theoretical 
results with the numerical results of Marro and Masoliver and discuss possible reasons 
for disagreement where it occurs. Our conclusions are summarised in 0 4. 

0305-4470/87/092497 + 14$02.50 @ 1987 IOP Publishing Ltd 2497 
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2. Theoretical results 

The system under consideration consists of N mass points m, moving in one dimension. 
These particles are assumed to move freely until two of them, say those labelled by i 
and i +  1, collide with each other. In such an event the initial velocities of the two 
collision partners, v i  and u , + ~ ,  are suddenly changed into 

where U, > U,+, and hence v :  < U:+,. That is, the mass points are impenetrable and 
interact through hard core collisions (‘hard rods’). We assume that the distance of 
two particles is limited by a length L (‘volume’) and that the furthest particles, labelled 
by 1 and N, interact like nearest neighbours. This can be interpreted in several ways, 
e.g. by assuming the particles to move on a ring. It is easily seen that the centre of 
mass moves freely. This trivial part of the motion can be separated from the relative 
motion but this is of importance for small systems only. 

It has been shown that systems where all the masses are equal (‘homogeneous 
systems’) are integrable (Kasperkovitz and Reisenberger 1985a, b). This means that 
the evolution is not ergodic on the whole energy surface but only on tiny fractions of 
it (strictly speaking, subsets of measure zero). These are the ‘invariant tori’ or ‘smallest 
stationary ensembles’ characterised by N conserved quantities. Since two particles 
only exchange their velocities in a collision if their masses are equal one may choose 
the set of initial velocities as these conserved quantities. 

There are strong indications that ‘inhomogeneous’ systems where at least two 
different finite masses are allowed to collide are ergodic (Foidl 1987), provided that 
N > 3 (for the peculiarities of the three-particle system see, e.g., Rabouw and Ruijgrok 
(1981) and Richens and Berry (1981)). In the following we shall adopt the ergodic 
hypothesis for these systems, i.e. we shall interpret expectation values calculated with 
a microcanonical ensemble as time averages for initial conditions belonging to the 
same energy. Obviously such an interpretation is not allowed for the homogeneous 
systems where the smallest stationary ensemble determined by the initial condition 
has to be used instead. 

The quantities we are interested in are the following: 
(i)  the velocity distribution function, i.e. the fraction of particles which are expected 

(ii) the average number of collisions of pair i ,  i +  1 and the collision frequency 

(iii) the velocity autocorrelation function to first order in time. 
The velocity distribution is the expectation value 

to have a velocity lying in (U, v + d v ) ;  

derived from it; and 

where 2 indicates the ensemble over which the observable is averaged. This label 
contains the fixed parameters N,  L, m , ,  . . . , m N ,  and the labels E (total energy) or 
{ u i }  (set of initial velocities) if the ensemble is constant in time. In any case the average 
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is formed over all configurations. If  c ~ , ~ + , (  T (  V, X )  = number of collisions of the pair 
i, i - t  1 within the time interval (0, T ) ,  if the initial conditions are given by V =  
( U , ,  u z ,  . , . , v N )  and X = (xI, x 2 , .  . . , xN), then the collision frequency of this pair is 

Note that this quantity is independent of T if 2 is constant in time, i.e. if the ensemble 
is the closure of one or more orbits in phase space. For these ensembles the collision 
frequency 

defines a timescale to,z.  (Note that the frequency (2.5) is one half of the commonly 
used collision frequency N-' Z, v;, v >  = v>'-'+ ). The value to,Z can be used to 
scale time-dependent expectation values like the velocity autocorrelation function 

(2.6) 

For a non-stationary ensemble where initially the velocities are fixed by some vector 
U = ( u1 , u 2 ,  . . . , u N )  while all configurations are equally probable the expectation 
values of (2.3), (2.4) and (2.6) are 

@ 2 t )  = (u ,u , , [  v, X I ) = .  

and 

(2.9) 

( z )+=f (z+ /z I ) .  (2.10) 

where 

From these equations the microcanonical expectation values are obtained by averaging 
over all vectors U belonging to the energy E. The corresponding functions for the 
homogeneous system follow from equations (2.7)-(2.9) if one sets m, = m and averages 
over all permutations of the initial velocities U, (Kasperkovitz and Reisenberger 
1985a, b, c). It is obvious that the velocity distribution function depends only on the 
magnitudes of the masses m, while the total collision frequency and the velocity 
autocorrelation function depend on the mass distribution at hand, i.e. on the whole 
sequence m ,  , m 2 , .  . . , m N  or part of it. If the masses are assigned to the particles at 
random one has to average vE and @ L ( t )  over all possible mass distributions. 

In the following we consider the thermodynamic limit of a binary mixture of masses 
m, and mh where the concentrations 

N,/ N = c, s = a , b  (2.11) 

the density 

N / L = n  (2.12) 
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and the energy per particle 
E I N  = E =;k ,T (2.13) 

approach finite values. For this system the microcanonical expectation values are as 
foIIows: 

(2.15) 

(2.17) 

(2.18) 

(2.19) 

Since (2.18) is valid for all times it follows from Kubo’s formula that the self-diffusion 
constants D“ and D h  are functionally related by 

(2.20) 

where D ( z ,  , . . . , z6)  is the same function in both equations. 
According to the ergodic hypothesis we interpret the quantities (2.14), (2.16), and 

(2.17) or (2.19) for ma # mb as time averages for fixed initial conditions (V, X ) .  This 
means, for instance, that the function 

averaged over all mass distributions, should tend to (2.16) for T + CO if E is the total 
energy calculated from the initial velocities V. Likewise, the quantities (2.14) and 
(2.17) should be the average of the observables N - ’  2,  S (  vi,.[ V, XI - U )  and 
uir.[  V, X I v , ( , , + , ) [  V, XI, respectively, taken over the infinite time interval 0 6  t’s 7, T +  CO, 

and all possible mass configurations. 
It is interesting to compare these time averages over infinite time intervals ( T + CO) 

with the corresponding averages over very short times ( T + 0). For fixed initial condi- 
tions ( V, X )  the abovementioned observables are highly irregular functions of time. 
To obtain smooth functions it is sufficient to average these observables over all 
configurations X .  This spatial averaging has no influence on the time average for T + CO 

since the energy E does not depend on the positions. Therefore, if we specify the 
initial velocities U, = U, and perform the necessary average over the possible mass 
distributions, we can use equations (2.7)-(2.9) to get some insight into the way these 
time averages depend on the length of the time interval considered. To this end we 
now assume that initially one half of the particles have velocities + c  and the other 
half -c ,  the signs being randomly distributed. The order of the signs and the mass 
distribution are irrelevant for the velocity distribution 

f ; * , ) ( u ) = f [ s ( v - C ) + S ( y + C ) ]  (2.21) 
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but the corresponding averages have to be performed to obtain the desired collision 
frequency and the velocity autocorrelation function. 

(2.22) 

@ { i c l ( t )  = c,@7*c)(t) + q,@f+c]( t )  = c'[ 1 - 2nct + O( t 2 ) ] .  (2.23) 
Like the quantities (2.21) and (2.22), the linear term of the function (2.23) is independent 
of the masses although the corresponding terms of the constituents 

(2.24) 

and 4fkci(t)  (obtained by exchanging a and b in equation (2.24)) depend on the mass 
ratio m,/mb and the concentrations c, and cb. 

All these considerations apply for inhomogeneous systems only. If all masses are 
equal equations (2.7)-( 2.9) have to be averaged over all permutations of initial velocities 
to obtain the time averages. For the initial conditions considered here one obtains 
once more the right-hand sides of equations (2.21)-(2.23). However the interpretation 
is now different: these quantities are now the time averages over an infinite time interval 
for fixed initial conditions, whereas before the time interval was infinitesimal and the 
observables were averaged over all possible initial configurations. 

It is interesting to note that the results for the collision frequencies and the velocity 
autocorrelation functions, equations (2.16) and (2.19), and (2.22) and (2.24), respec- 
tively, may also be obtained from the Boltzmann equation. For h"(  u, f l u o ) ,  the velocity 
distribution of an a particle at time t that evolves from the initial distribution 

ha(u ,Oluo)=  6 ( u - u 0 )  (2.25) 

the Boltzmann equation is 

ah"(u' t l u o ) =  -P"(u , )h"(v ,  t l u o ) + /  Wa(uo+ u , ) h a ( u ,  f l u , )  do, .  (2.26) 
a t  

In this equation the velocity-dependent collision rate 

P"(uo)= W"(uO+ 01) dui I 
and the transition probability (Eder and Lackner 1984) 

(2.27) 

W" ( uo + u1 ) = n I u,  - uol [ c x  ( U ,  ) + cb (*) *f ' ( e' U, - -' uo) ] (2.28) 
2 mb 2mh 2mb 

where the functions f'(s = a, b )  describe the velocity distribution of the collision 
partners. The collision frequency for the a species follows from (2.27) as 

(2.29) 

where the factor 4 takes into account that in (2.28) and (2.27) the collisions of the test 
particles with both neighbours are counted while the definition of v given before in 
equation (2.5) refers to one (randomly selected) pair only. The corresponding velocity 
autocorrelation function is given by 

(2.30) 
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This function is obtained up to first order in t if 
ha ( U, t I U,,) = S ( U - u0) + t [  - P" ( uo)S ( U - uo) + W" ( uo + U)] + O( t 2 )  (2.3 1 ) 

is inserted into the integral (2.20). Formulae for the 6 species are obtained by 
interchanging a and 6 everywhere. 

If the functions f' are the equilibrium distributions (2.15) then 

(2.32) 

and 

(2.33) 

coincides with (2.16). If the distributions fz and f p  are used in (2.28), (2.27) and 
(2.30), this integral may be carried out to yield (2.19) with m, = m,, m2 = m,,. If the 
initial distribution (2.21) is used instead of E and E one obtains 

~ y = ~ ~  = f n c  (2.34) 

and @ T * c ) ( t )  as given by equation (2.24). 
It should be noted that the integrated form of the Boltzmann equation at t = 0, 

equation (2.31), can be derived from exact dynamics of the (finite) system by averaging 
over all mass distributions and performing the thermodynamic limit. This explains 
why the exact results listed above can also be derived from a Boltzmann description 
of the system. 

b v, = cav: + C b v ,  

3. Comparison with molecular dynamics simulations 

We now compare our theoretical results with the corresponding data of the computer 
simulations performed by Marro and Masoliver (1985a, b) and Masoliver and Marro 
(1983). The parameters of the binary mixture studied by these authors are 

N = L = 1 0 0 0  (3.1) 

mu = 1 mb = 1 s p S . 5 0  (3.2) 

(3.3) c = c  -1 

c = l .  (3.4) 

a b - 2  

and 

The particles with mass mu = 1 were selected at random and so were the particles with 
initial velocity + l .  

One topic studied extensively by Marro and Masoliver is the relaxation of the 
initial velocity distribution 

(3.5) 
to an equilibrium distributionf,,(u) if p > 1. An irreversible approach to a distribution 
which is constant in time would contradict PoincarC's recurrence theorem; but it can 
be expected that within sufficiently long periods of observation the instantaneous 
distribution of the velocities deviates only slightly from some function feq( U )  for most 
of the time. This function can then be identified with the time average of the instan- 
taneous velocity distribution, a quantity already considered in the theoretical analysis 
of 0 2. 

fo( U )  = f[ S( U - 1) + S( U + l ) ]  
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In all their investigations Marro and Masoliver assume that feq(u) is one single 
Gaussian. This is a strange assumption for several reasons. 

( i)  The authors observed equipartition of energy (Masoliver and Marro 1983). 
Together with the assumed form of feq( u )  this would imply that fzq( U )  and ftq( U), the 
equilibrium distributions for the two species, are different non-Gaussian functions the 
sum of which is a Gaussian. This would call for further explanation, because it is at 
variance with the usual assumption that in equilibrium all components of a (three- 
dimensional) gas mixture have Maxwell-Boltzmann velocity distributions with mass- 
dependent mean-square velocities (Chapman and Cowling 1970). 

(ii) Marro and Masoliver calculate the kurtosis 

k = (U')/( U')* - 3 (3.6) 

for the experimentally observed distributions f G D  (here and later on the M D  refers to 
the molecular dynamics simulations of Marro and Masoliver). The values k M D  ranging 
from -0.49 to 3.08 (see table 1) strongly indicate that fittingf:D( u )  to a single Gaussian, 
for which k = 0, is highly questionable. 

Table 1. Standard deviation(s), kurtosis and Boltzmann's H function for equilibrium 
( =time averaged) velocity distributions. 

1.01 1.03 1.05 1.2 2 5 8 10 30 50 

a M D  

kTH 
k M D  

-H:: 
-HE" 

1.0025 
0.9975 
1 .oooo 
1.0009 

0.0001 
-0.49 - 

1.42 
0.37 

1.0075 1.0124 1.049 
0.9927 0.9880 0.957 
1.0001 1.0003 1.004 
1.0009 1.0014 1.006 

0.0007 0.0018 0.025 
-0.38 -0.09 -0.09 

1.42 1.42 1.42 
0.37 0.37 0.37 

1.225 1.73 2.12 2.35 3.94 5.05 
0.866 0.77 0.75 0.74 0.72 0.71 
1.061 1.34 1.59 1.74 2.83 3.61 
1.006 1.33 1.57 1.70 2.54 2.96 

0.33 1.33 1.81 2.01 2.63 2.77 
0.28 1.31 1.70 2.10 2.61 3.08 

1.48 1.68 1.82 1.89 2.26 2.43 
0.37 0.39 0.41 0.41 0.44 0.44 

(iii) To illustrate the approach to equilibrium Marro and Masoliver also calculated 
Boltzmann's H function, 

H = f(u) ln f (u)  du I (3.7) 

for the time-dependent velocity distributions. The limiting value Heq is obtained for 
the stationary distribution feq( 0). If this is a Gaussian with standard deviation U then 

(3.8) - H ~ ~  = In =+In U. 

A linear dependence of -HED on In uMD has actually been observed (Marro and 
Masoliver 1985, figure 2) but the limit found for uMD+ 1 is -0.37 instead of In =- 
1.42 and the slope is -0.07 instead of 1. This is a hint that the approximation offeq(u) 
by a single Gaussian is inappropriate or that the runs are too short to extract equilibrium 
properties. 
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According to the considerations of $ 2  the equilibrium distribution for p > 1 should 
be (cf equations (2.14) and (2.15)) 

F p ( u )  =t[G,(u)+ Gi,,(v)I (3.9) 

(3.10) 

where the energy per particle has been chosen as 

E = E /  N = a( 1 + /A) (3.11) 

because of equations (3.1)-(3.4). The standard deviations of the two Gaussians are 

a, = [+( 1 + /.&)]I/* a* = [+( 1 + p -711 ’2 ,  (3.12) 

From equations (3.9) and (3.10) one obtains by elementary integration the standard 
deviation 

(3.13) (+ = ( u 2 )  = +(2+ p + p-I)l ’* 

and the kurtosis 

(3.14) 

The evaluation of equation (3.7) for f = F, has to be done numerically. 
Table 1 shows the values of CT, k and -Heq, obtained from theory (superscript TH) 

and molecular dynamics simulation (superscript MD).  The standard deviations vTH 
and uMD are seen to agree for p zs 10, but for larger mass ratios the wide spread of 
the velocities of the light particles has either not been reached experimentally or not 
been properly taken into account. The differences are more pronounced for the kurtosis 
which according to equation (3.14) should always be positive. The negative values of 
k M D  for p s 1.2 indicate that the runs for these mass ratios have been too short to 
allow a calculation of equilibrium properties. These negative values show a strong 
resemblance of the initial distribution (3.5) for which k = -2. This fact becomes more 
pronounced as the mass ratio tends to 1. This reflects a fact already pointed out by 
Marro and Masoliver: if the masses are almost equal the inhomogeneous (ergodic) 
system very much resembles a homogeneous (integrable) one even for long observation 
times. On the other hand, k M D  and kTH agree well for larger mass ratios. Finally, the 
most dramatic differences between theory and computer simulation show up in 
Boltzmann’s N function, where -HGD shows the same tendency as -Hzt (monotoni- 
cally increasing with p )  but is smaller by one order of magnitude. Since -Heq = --03 

for the initial distribution, as can be seen by approximating the distribution (3.5) by 
a sequence for which the integral (3.7) can be calculated, the small values of 
- H ~ D w o u l d  suggest that all runs were too short to yield reliable results for all 
equilibrium properties of interest. This is a point which has to be clarified by further 
investigations. 

Another quantity that can be compared is the collision frequency. For p > 1 one 
obtains from equations (3.1)-(3.3) and (2.16), 

I 
8JT 

v, = - [(2 + 2 p y  + 2(2 + /L + /.& - !) I /? + ( 2  + 2p-‘)1’2] (3.15) 

while for p = 1 and the initial velocities *l  one finds 

V { * I )  = i (3.16) 
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(cf equation (2.22)). This is nor the limit of equation (3.15) for p + 1 which is 
= - I D -  0.56. The discontinuity of the collision frequency, obtained as the time average 
for two hard rod systems with identical initial conditions but mass ratios p = 1 and 
p > 1, respectively, reflects the qualitative differences between integrable and ergodic 
systems. In table 2 the values of to = v-' of Marro and Masoliver (1985b) are contrasted 
with their counterparts (3.15) and (3.16). 

Table 2. Inverse collision frequency. 

1 1.01 1.03 1.05 1.2 2 5 8 10 30 50 

1,"" 2.0 1.97 1.86 1.79 1.77 1.68 1.36 1.16 1.07 0.65 0.50 

fTH 2.0 1.773 1.773 1.772 1.766 1.684 1.366 1.171 1.080 0.687 0.546 

The theoretical values agree with the molecular dynamics data over a wide range 
(1.05 d p s 10). However, for p + 1 the measured time unit trD tends to 2, the inverse 
of the limit 

(3.17) 

which is obtained for all runs starting with the velocity distribution (3.5), independently 
of the mass ratio p. This is one more hint that the evolution of the 'nearly integrable' 
systems with p zs 1.2 should have been followed for much longer times. One might 
object that equation (2.22), which yields the frequency (3.17), has been derived by 
averaging over all positions and all permutations of the initial velocities + l .  But Marro 
and Masoliver (1985b) and Masoliver and Marro (1983) state that their results are 
practically independent of the initial conditions. If the collision frequency vv,x = 
( N T ) - ~  Z, c , , ,+~(  71 V, X )  is really (practically) independent of the initial configuration 
X then averaging over X does not change this quantity (essentially) and its limit for 
7+0 should be calculable by means of (2.8). The collision frequency v(+O) would 
then be a function of the random variables U ,  which here assume the values *l  with 
probability 4. The expectation value of v(+O) for this distribution is just 4, as given 
in equation (3.17). The corresponding standard deviation is -0.02 which would explain 
why the collision frequency for short times is practically independent of the distribution 
of the initial velocities *l .  Note that it is not necessary to make an assumption on 
how v ~ , ~ ( T )  depends on the initial positions, once the ergodic hypothesis has been 
accepted. But this, of course, concerns only the collision frequency V ( T )  for large 
observation times 7. 

For medium mass ratios (2 S p d 10) where Marro and Masoliver observe the fastest 
decay of the initial velocity distribution (3.5) their collision frequencies are in excellent 
agreement with the theoretical values. A systematic deviation from these values occurs 
again for p Z 10, but now in the opposite direction. These deviations may be related 
to the presence of heavy masses and the special initial conditions chosen here. Consider, 
for instance, the time r l  = n = 1 after which two neighbouring particles would have 
collided just once if they had opposite velocities and were initially a distance L/  N = 
n-' = 1 apart. Taking into account the initial distribution of the velocities and equations 
(2.1) and (2.2) for mb = p >> 1 = m, we expect that at this moment nearly all the heavy 
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and -75% of the light particles still have velocities of magnitude - 1 while -25% of 
the light particles have been accelerated to velocities near *3. Repeating the argument 
we would expect that after a time tz = 2n = 2 the magnitude IuI would still be - 1 for 
the heavy particles, but IuI - 1 only for -67% of the light particles, IuI - 3 for -27%, 
and \ U ]  - 5 for -6% of them. The heavy particles will, of course, slow down to their 
thermal velocity, e.g. 1 U I  - 0.6 for p = 50, but this will not happen before sufficiently 
many fast light particles are present. In  the initial stage of the evolution the light 
particles will have to be, on average, much faster than in equilibrium, as can be seen 
from an  example: to slow down a rod of mass mh = 50 from uh = 1 to U; = 0.6 the light 
rod of mass m, = 1 must have a velocity of magnitude Iu,I - 9.2 which is much larger 
than the equilibrium value Iu,I -4 .  The initial creation of fast particles entails a rapid 
increase of the collision frequency v( 7) from its initial value v(+O) = 0.5. Moreover, 
if the arguments given above hold true, V(T) will first overshoot its equilibrium value 
~ ( c o )  = v,. Consequently, if the observation time T is not long enough, the measured 
collision frequency will be too large (and hence to too small) compared to the time 
average for T =CO, and this effect will increase with the mass ratio p. 

The next quantity we want to discuss is the slope of the normalised velocity 
autocorrelation function at t = 0 which is of interest for Langevin-type approximations 

$( t ) -exp(- t lT)  (3.18) 

which describe the Ornstein-Uhlenbeck process. For the homogeneous system 
Lebowitz and Sykes (1972) calculated the function for even N,  assuming that initially 
half of the particles have velocity +c  and the other half -c. Their result for c = 1 ,  
n = l  and N + o o i s  

$ c f l ) ( t )  = exp(-21) (3.19) 

so that the slope at t = 0 is equal to -2. This result follows also from (2.9). For the 
inhomogeneous systems we see from equations (2.19), (3 .1) ,  (3.2) and ( 3 . 1 1 )  that the 
derivatives of P: and P: are given by the formulae 

(3.20) 

(3.21) 

with y = E and 

(3.22) 

For the non-stationary distribution with the random velocities * l ,  y = {*l}, one finds 
for the derivatives (3.20) and (3.21) with 

(3.23) 

(cf equation (2.24)). 
In their numerical investigations Marro and  Masoliver calculated the function 

(3.24) 
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where 

E(') = sum over all particles with mass m, = m, (3.25) 
, 

and 

@b,x(r) = u,,o[vI XlU,.,[V, XI (3.26) 

U,,,,[ V, XI being the velocity of particle i at time t' if the initial velocities and positions 
are given by V and X, respectively. The function (3.24) is neither a time average nor 
the average over a stationary ensemble. Comparison with the velocity autocorrelation 
functions defined in (i 2 is therefore only possible if one accepts Marro and Masoliver's 
claim that the function (3.24) is practically independent of X, the initial configuration 
of the particles. Each of the functions (3.26) could therefore be averaged over X to 
yield a function that is, to first order in time, given by equation (2.9) with U, = U,. For 
the mixture considered here we may then argue as before and replace the linear term 
depending on the initial distribution of the velocities *1 and masses 1 and p, respec- 
tively, by its average. The resulting derivative is given by equation (3.23) which differs 
significantly from the time average (3.22) expected for p > 1. Quite the same arguments 
hold for the second constituent of the mixture. Table 3 shows for both species the 
theoretical values of the derivative, (7TH)-I and (T::~))-', and the values ( T ~ ~ ) - '  

obtained from tables 1 and  2 of Marro and  Masoliver (1985b). Note that these 7 values 
were obtained by fitting the functions r ) / @ G , x ( 0 ) ,  s = a, b, within a region 
Oc t S to to exponentials (3.18). 

Table 3. Theoretical relaxation times of the velocity autocorrelation function and those 
obtained by computer simulations (Marro and Masoliver 1985b). 

1 1.01 1.03 1.05 1.2 2 5 8 10 30 50 

( T:.! ' 2.26 2.27 2.28 2.30 2.42 2.98 4.48 5.59 6.21 10.62 13.68 
(T:.Y+~~)-' 2.00 2.00 2.01 2.02 2.09 2.33 2.67 2.78 2.82 2.94 2.96 
(T!")..' 2.00 1.52 1.57 1.67 1.73 2.03 4.62 4.33 4.94 4.23 4.09 

(TA.! ) - ' 2.26 2.25 2.23 2.22 2.11 1.78 1.38 1.25 1.19 1.02 0.97 
(TT .Y* , ) ) - '  2.00 2.00 1.99 1.98 1.91 1.67 1.33 1.22 1.18 1.06 1.04 
(7YD) - '  2.00 1.81 1.91 1.80 1.74 1.51 1.40 1.38 1.26 1.07 0.93 

The disagreement of the theoretical and  numerical results is obvious. Apart from 
p = 1 the values of ( T ~ ~ ) - '  and (T::~~)-' are of comparable magnitude for p = 2 only 
where they still differ by 13% (light particles) and  10% (heavy particles), respectively. 
The differences between ( T ~ O ) - '  and ( T { * ~ ) ) - ' ,  which are especially marked for the 
lighter constituent of the mixture, indicate that averaging the velocity autocorrelation 
function (3.26) over all particles of the same kind may smoothen the functional 
dependence on the initial positions but i t  is insufficient to completely get rid of it. The 
sum in definition (3.24) makes plausible why it is immaterial which random sequences 
of masses and  signs of the particle velocities have been used in the computer experiment, 
but even this assertion cannot be proved before the functions @'v,x(  t )  are explicitly 
known. 
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The discrepancy of the observed derivatives ( 7MD)-I and the expected time averages 
(7$H)-' is, on the average, even greater; the relative agreement for p = 5 could be 
related to the fast relaxation of the initial distribution for this mass ratio (see also 
Dickman 1985). This is not surprising because the velocity autocorrelation function 
(3.24) has neither been averaged over different time origins nor over several initial 
states with the same energy. Moreover, as has been pointed out before and is also 
evident from the average distribution of the velocities, equations (3.7) and (3.8), the 
set of initial velocities considered here is very atypical, especially for p >> 1. Deviations 
from the theoretical values are therefore the larger the more the masses differ. It is, 
however, interesting to note that for 1 < p S 2 and p 30 the observed values ( T ~ ~ ) - I  

are closer to the 'initial' values ( 7fFIli)-l than to the time averages ( T : ~ ) - ' .  This shows 
once more that these systems are similar to integrable ones over long periods while 
those with 2 s 

The only overall agreement between the theoretical and the numerical results reduces 
to the following qualitative statement. The slope of the light particle's velocity 
autocorrelation function decreases monotonically with increasing mass ratio p ; for 
the heavy particles the slope increases monotonically. Theoretically the one slope 
decreases without limit whereas the other one tends to a finite limit for p +CO. 

Finally, let us comment on the mass dependence of the self-diffusion constants D" 
and Db. Marro and Masoliver (1985b) found that their approximate self-diffusion 
constants Da and f i b  fitted well to relations of the form 

D ' =  %+PsZ(m,,  s = a , b  (3.27) 

where ai, P s  are numerical constants and z(m,, m,,) is the reduced mass mamh/(mo + 
m b ) .  This would be compatible with equation (2.20) if a, = (Yh and Pa = P b  but Marro 
and Masoliver found 

a y D  = 0.79 a y D  = 0.07 PyD= -0.61 ByD = 0.82. (3.28) 

It might be that in their original fit the variable was 

s 10 reveal ergodic behaviour much sooner. 

z ( m a ,  m b ) = k . / ( I + p )  (3.29) 

which later on was interpreted as reduced mass because of (3.2). If we consider p as 
the mass ratio m , / m h  then (2.20) and (3.27) imply the following relations between the 
numerical constants: 

Pa+Ph=O (3.30) 

P o  - P h  = -2(aa - a h ) .  (3.31) 

While (3.31) is well satisfied by the parameters (3.28) and the signs of /3yD and ByD 
are different, as required by (3.30), their magnitudes differ considerably. We therefore 
think that relation (3.27) with z ( m , ,  m b )  given by (3.29) should be modified so that it 
satisfies the general symmetry requirements, irrespective of whether this is an approxi- 
mate law or a rigorous one. 

4. Conclusion 

In 0 2 we first stated for a binary mixture of hard rods formulae for the equilibrium 
velocity distribution, the collision frequency and the velocity autocorrelation function 
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to first order in time. In 0 3 our theoretical results were compared with the correspond- 
ing numerical results obtained from molecular dynamics simulations for mixtures of 
1000 (500+ 500) rods with mass ratios p = m J m ,  varying from 1 to 50 (Marro and 
Masoliver 1985a, b, Masoliver and Marro 1983). The results of this comparison and 
our conclusions are the following. 

(i) Contrary to the assumption of Marro and Masoliver the equilibrium velocity 
distribution is not one single Gaussian but the superposition of two Maxwell- 
Boltzmann distributions whose differences become more apparent as p increases. 

(ii) The equilibrium values of Boltzmann's H function both decrease with p but 
the values calculated by Marro and Masoliver are smaller than those obtained by 
theory by one order of magnitude. Since the origin of this discrepancy is not clear 
further investigations are needed to clarify this point. 

(iii) The collision frequencies agree well over a wide range of mass ratios (1.2 < p 
10) but the deviations for nearly homogeneous systems ( p  S 1.2) and those containing 
very heavy particles ( p  z 30) indicate that the runs performed by Marro and Masoliver 
were too short to extract equilibrium properties ( =time averages). 

(iv) For the derivative of the velocity autocorrelation function at t = 0 agreement 
was only found for the mass ratio p = 5 for which the fastest relaxation of the initial 
velocity distribution has been observed in the computer experiment. For mass ratios 
p < 5 and p > 5 the derivatives obtained numerically differ considerably from the 
theoretical values, especially the value for the light particles, which is 77% of the 
theoretical one for p = 1.01 and only 30% for p = 50. As for the collision frequency 
it may be conjectured that these deviations result from the interplay of the slow 
relaxation of these systems and the peculiar initial conditions used in the molecular 
dynamics simulation. 

(v )  We finally concluded from general considerations that the dependence of the 
self-diffusion constant D" and Db on the masses ma and mb cannot be of the form 
given by Marro and Masoliver. Even if the mass-dependent variable mamb/(  ma + mb) 
is reinterpreted as p / ( 1  + p ) ,  the numerical constants have to be modified so that D" 
and Db satisfy a symmetry relation that follows from the definition of these constants. 
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